
PolyThrottle: Energy-efficient Neural Network
Inference on Edge Devices

Minghao Yan
Department of Computer Sciences
University of Wisconsin-Madison

myan@cs.wisc.edu

Hongyi Wang
School of Computer Science
Carnegie Mellon University
hongyiwa@andrew.cmu.edu

Shivaram Venkataraman
Department of Computer Sciences
University of Wisconsin-Madison

shivaram@cs.wisc.edu

Abstract

As neural networks (NN) are deployed across diverse sectors, their energy demand
correspondingly grows. While several prior works have focused on reducing energy
consumption during training, the continuous operation of ML-powered systems
leads to significant energy use during inference. This paper investigates how
the configuration of on-device hardware—elements such as GPU, memory, and
CPU frequency, often neglected in prior studies, affects energy consumption for
NN inference with regular fine-tuning. We propose PolyThrottle, a solution that
optimizes configurations across individual hardware components using Constrained
Bayesian Optimization in an energy-conserving manner. Our empirical evaluation
uncovers novel facets of the energy-performance equilibrium showing that we
can save up to 36 percent of energy for popular models. We also validate that
PolyThrottle can quickly converge towards near-optimal settings while satisfying
application constraints.

1 Introduction

The rapid advancements in neural networks and their deployment across various industries have revo-
lutionized multiple aspects of our lives. However, this sophisticated technology carries a drawback:
high energy consumption which poses serious sustainability and environmental challenges [1, 2, 3, 4].
Emerging applications such as autonomous driving systems and smart home assistants require real-
time decision-making capabilities [5], and as we integrate NNs into an ever-growing number of
devices, their collective energy footprint poses a considerable burden to our environment [6, 7, 8].
Moreover, considering that many devices operate on battery power, curbing energy consumption not
only alleviates environmental concerns but also prolongs battery life, making low-energy NN models
highly desirable for numerous use cases.

In prior literature, strategies for reducing energy consumption revolve around designing more efficient
neural network architectures [9, 10], quantization [11, 12, 13, 14, 15], or optimizing maximum
GPU frequency [16, 17]. From our experiments, we make new observations about the tradeoffs
between energy consumption, inference latency, and various other hardware configurations. Memory
frequency, for example, emerges as a significant contributor to energy consumption (as shown
in Figure 3), beyond the commonly investigated relationship between maximum GPU compute
frequency and energy consumption. Table 2 shows that even with optimal maximum GPU frequency,

Preprint. Under review.

Inference request
Inference request

Inference requests

CPU

Inference Server

Fine-tuning

GPU Memory

Batchsize
Latency

Optimal
Config

GPU

Sensor Data

Continuous Job

Daily Update

Fine-tuning requests

Job Scheduler

Input
Optimizer

Constraint

Performance
predictor

Optimal
Config

Figure 1: Figure illustrating the overall workflow of PolyThrottle. The optimizer first identifies
the optimal hardware configuration for a given model. When new data arrives, the inference server
handles the inference requests. Upon receiving a fine-tuning request, our performance predictor
estimates whether time-sharing inference and fine-tuning workloads would result in SLO violations.
Then the predictor searches for feasible adjustments to meet the SLO constraints. If such adjustments
are identified, the system implements the changes and schedules fine-tuning requests until completion.

we can save up to 25% energy by further tuning memory frequency. In addition, minimum GPU
frequency also proves to be of importance in certain cases, as shown in Figure 3 and Table 3.

We also observe that a simple linear relationship falls short of capturing the tradeoff between energy
consumption, neural network inference latency, and hardware configurations. The complexity of this
tradeoff is illustrated by the Pareto Frontier in Figure 2. This nuanced interplay between energy
consumption and latency poses a challenging question: How can we find a near-optimal configuration
that closely aligns with this boundary?

Designing an efficient framework to answer the above question is challenging due to the large
configuration space, the need to re-tune each model and hardware, and frequent fine-tuning operations.
A naive approach, such as grid search, is inefficient and can take hours to find the optimal solution
for a given model and desired batch size on a given hardware. The uncertainty in inference latency,
especially at smaller batch sizes [18], further exacerbates the challenge. Furthermore, given that
distinct hardware platforms and NN models display unique energy consumption patterns (Section 3),
relying on a universally applicable pre-computed optimal configuration is not feasible. Every deployed
device must be equipped to quickly identify its best configuration tailored to its specific workload.
Finally, in production environments, daily fine-tuning is often necessary to adapt to a dynamic
external environment and integrate new data [19, 20]. This demands a mechanism that can quickly
adjust configurations to complete fine-tuning requests in time while ensuring the online inference
workloads meet Service Level Objectives (SLOs).

In this paper, we explore the interplay between inference latency, energy consumption, and hardware
frequency and propose PolyThrottle as our solution. PolyThrottle takes a holistic approach, optimiz-
ing various hardware components and batch sizes concurrently to identify near-optimal hardware
configurations under a predefined latency SLO. PolyThrottle complements existing efforts to reduce
inference latency, including pruning, quantization, and knowledge distillation. We use Constrained
Bayes Optimization with GPU, memory, CPU frequencies, and batch size as features, and latency
SLO as a constraint to design an efficient framework that automatically adjusts configurations, en-
abling convergence towards near-optimal settings. Furthermore, PolyThrottle uses a performance
prediction model to schedule fine-tuning operations without disrupting ongoing online inference
requests. We integrate PolyThrottle into Nvidia Triton on Jetson TX2 and Orin and evaluate on
state-of-the-art CV and NLP models, including EfficientNet and Bert [10, 21].

To summarize, our key contributions include:

1. We examine the influence of hardware components beyond GPUs on energy consumption, delineate
new tradeoffs between energy consumption and inference performance, and reveal new possibilities
for optimization.

2. We construct an adaptive framework that efficiently finds energy-optimal hardware configurations.
To accomplish this, we employ Constrained Bayesian Optimization.

2

batchsize = 1 batchsize = 2 batchsize = 4 batchsize = 8

1 2 3 4 5 6
Normalized latency

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

En
er

gy
 c

os
t p

er
 q

ue
ry

 (J
)

Jetson Orin Pareto Frontier (EfficientNet B7)

1 2 3 4 5 6 7 8
Normalized latency

0.60

0.65

0.70

0.75

0.80

0.85

En
er

gy
 c

os
t p

er
 q

ue
ry

 (J
)

Jetson TX2 Pareto Frontier (EfficientNet B4)

Figure 2: Left figure shows the Pareto Frontier of energy vs. latency tradeoff for various batch sizes
on EfficientNet B7 on Jetson Orin. Right figure shows the Pareto Frontier of energy vs. latency
tradeoff for various batch sizes on EfficientNet B4 on Jetson TX2. Each data point in this plot is
representative of a unique hardware configuration, and each line corresponds to a batch size. The
figure shows that the tradeoff does not always conform to the same pattern across varied hardware
platforms and models.

3. We develop a performance model to capture the interaction between inference and fine-tuning
processes. We use this model to schedule fine-tuning requests and carry out real-time modifications
to meet inference SLOs.

4. We implement and evaluate PolyThrottle on a state-of-the-art inference server on Jetson TX2 and
Orin. With minimal overheads, PolyThrottle reduces energy consumption per query by up to 36%.

2 Motivation

Many deep neural networks have been deployed on edge devices to perform tasks such as image
classification, object detection, and dialogue systems. Scenarios including smart home assistants [22],
inventory and supply chain monitoring [5], and autopilot [23] often use battery-based devices that
contain GPUs to perform the aforementioned tasks. In these scenarios, pre-trained models are
installed on the devices where the inference workload is deployed.

Prior works have focused on optimizing the energy consumption of GPUs [24, 25, 26, 27, 28] in
cloud scenarios [29, 30, 31] and training settings [32, 33, 34]. On-device inference workloads exhibit
different characteristics and warrant separate attention. In this section, we outline previous efforts
in optimizing on-device neural network inference and discuss our approach to holistically optimize
energy consumption.

2.1 On-device Neural Network Deployment

Prior work in optimizing on-device neural network inference focuses on quantization [11, 12, 13, 14,
15], designing hardware-friendly network architectures [35, 36, 37, 38, 39], and leveraging hardware
components specific to mobile settings, such as DSPs [40]. Our work explores an orthogonal
dimension and aims to answer a different question: Given a neural network to deploy on a specific
device, how can we tune the device to reduce energy consumption?

In our work, we focus on edge devices that contain CPUs, memory, and GPUs. These devices are
generally more powerful than DSPs often found on mobile devices. One such example is the Nvidia
Jetson series, which is capable of handling a wide array of applications, ranging from AI to robotics
and embedded IoT solutions [5]. The devices also come with dynamic voltage and frequency scaling
(DVFS) capabilities that allow for the optimization of power consumption and thermal management
during complex computational tasks. The Jetson series features a unified memory shared by both
CPU and GPUs. We refer to the operating frequency of CPU, GPU, and shared memory as CPU
frequency, GPU frequency, and memory frequency in this paper.

Case Study on Inventory Management: To understand the system requirements in edge NN
inference, we next describe a case study of how NNs are deployed in an inventory management

3

company. From our conversations, Company A works with Customer B to deploy neural networks on
edge devices to optimize inventory management. To comply with regulations and protect privacy,
data from each inventory site are required to be stored locally. The vast difference in the layout of the
inventories makes it impossible to pre-train the model on data from every warehouse. Therefore, these
devices come with a pre-trained model based on data from a small sample of inventories, which may
have significantly different layouts and external environments compared to the actual deployment
venue. Consequently, daily fine-tuning is required to enhance performance in the deployed sites, as
the environment continually evolves. Similar arguments apply to smart home devices, where a model
is pre-trained on selected properties, but the deployed households may be much more diverse. To
address privacy concerns, on-device fine-tuning of neural networks is preferred, as it keeps sensitive
data locally. Therefore, edge devices often need to run both inference and periodic fine-tuning.
Combining multiple workloads on edge devices can lead to SLO violations due to interference and
increased energy use.

2.2 Holistic Energy Consumption Optimization

Some recent works have explored reducing energy consumption by optimizing for batch size and GPU
maximum frequency [16, 41, 42, 17] and developing power models for modern GPUs [43, 44, 45, 46].
In this work, we argue that other hardware components also cause energy inefficiency and require
separate optimization. We perform a grid search over GPU, memory, and CPU frequencies and various
batch sizes to examine the Pareto frontier of inference latency and energy consumption. Figure 2
shows the tradeoff between the per-query energy consumption and inference latency (normalized to
the optimal latency) on Jetson TX2 and Jetson Orin. Each point in the figure represents the optimal
configuration that we find through grid search under a given inference latency budget and batch size.
As Figure 2 shows, the Pareto frontier is not smooth globally and is difficult to capture by a simple
model, which warrants more sophisticated optimization techniques to quickly converge to a hardware
configuration that lies on the Pareto Frontier [47].

Zeus [16] attempts to reduce the energy consumption of neural network training by changing the GPU
power limit and tuning training batch size. PolyThrottle also includes these two factors. In Zeus [16],
the focus is on training workloads in data center settings, where batch size tuning helps achieve an
accuracy threshold in an energy-efficient way. We include batch size as part of PolyThrottle as it
provides a trade-off between inference latency and throughput. Our empirical evaluation reveals new
avenues available for optimization which complicates the search space, as we describe next.

3 Opportunities

In this section, we perform empirical experiments to uncover new opportunities for optimizing
energy use in NN inference. As discussed in Section 2, prior work did not study how memory
frequency, minimum GPU frequency, and CPU frequency play a role in energy consumption. This
is partially limited by hardware constraints. Specialized power rails need to be built into the device
during manufacturing to enable accurate measurement of energy consumption associated with each
component. We leverage two Jetson developer kits, TX2 and Orin, which offer native support
for component-wise energy consumption measurement and frequency tuning, to study how these
frequencies impact inference latency and energy consumption in modern deep learning workloads.
We find that the default frequencies are much larger than optimal and throttling all these frequency
knobs offer energy consumption reduction with minimal impact on inference latency.

Figure 3 illustrates the energy optimization landscape when varying GPU and memory frequencies,
without imposing any constraints on latency SLO. The plot reveals that, without any other constraints,
the energy optimization landscape generally exhibits a bowl shape. However, this shape varies
depending on the models, devices, and other hyperparameters, such as batch sizes (See Appendix
B for more results). Next, we dive into how each hardware component affects inference energy
consumption.

Setup: Experiments in this section are performed with 16-bit floating point number precision, as
it has been demonstrated to have minimal impact on model accuracy in practice. We use Bert and
EfficientNet models and vary the EfficientNet model size between B0, B4, B7 (Table 4).

4

GP
U

fre
qu

en
cy

 (M
Hz

)

400

600

800

1000

1200

Memory frequency (MHz) 400
600

800
1000

1200
1400

1600
1800

Energy consum
ption per query(m

J)

30.0
32.5
35.0
37.5
40.0
42.5
45.0

EfficientNet B4 energy consumption per query on Jetson TX2

200 400 600 800 1000 1200
Minimum GPU frequency (MHz)

500

600

700

800

900

1000

1100

1200

1300

M
ax

im
um

 G
PU

 fr
eq

ue
nc

y
(M

Hz
)

EfficientNet B4 Energy Consumption on Jetson Orin

360

380

400

420

440

460

480

En
er

gy
 c

on
su

m
pt

io
n

pe
r q

ue
ry

 (m
J)

Figure 3: Left figure shows per query energy cost as we vary the GPU frequency and memory
frequency for EfficientNet B4 on Jetson TX2 versus varying memory and GPU frequency with batch
size fixed at 1. Right figure shows per query energy cost as we vary the minimum and maximum
GPU frequency. As we increase the minimum GPU frequency, energy cost decreases.

Table 1: This table shows the energy frequency range for Jetson TX2 and Jetson Nano in MHz.

Device Min GPU Max GPU Min Mem Max Mem

TX2 114.75 1300.5 40.8 1866
Orin 114.75 1300.5 204 3199

Memory frequency experiment: For each model, we fix the GPU frequency at the optimal frequency
determined by grid-search of all possible frequency configurations. We then examine the tradeoff
between inference latency and energy consumption as we progressively throttle memory frequency.
The range of available memory frequencies can be found in Table 1.

Results: Table 2 reveals that memory frequency plays a vital role in reducing energy consumption.
The savings provided by memory frequency tuning are similar and consistent across models on both
hardware platforms, ranging from approximately 12% to 25%. This indicates that the default memory
frequency is higher than optimal for modern Deep Learning workloads. For heavy workloads such as
Bert, memory tuning can account for the majority of the energy consumption reduction. This can
be partially attributed to the memory-bound nature of Transformer-based models [48]. Our result
demonstrates that systems that aim to optimize energy use in neural network inference need to take
memory frequency into account.

CPU Frequency Experiment: CPUs are only used for data pre-processing. Thus, we first measure
the time spent in the data processing part of the inference pipeline. Next, we measure the energy
saved by throttling the CPU frequency and assess the inference latency slowdown caused by reducing
CPU frequency. The data preprocessing we perform is standard in almost all image processing and
object detection pipelines, where we read the raw image file, convert it to an RGB scale, resize it, and
reorient it to the desired input resolution and data layout.

Results: The preprocessing time across different EfficientNet models remains constant since the
operations performed are identical. As a result, the relative impact of CPU tuning on overall energy
consumption depends on the ratio between preprocessing time and inference time. As the model
size increases and inference duration increases, the influence of CPU tuning on overall energy
consumption decreases. We observe that on both Jetson TX2 and Orin platforms, CPU tuning
can decrease preprocessing energy consumption by approximately 30%. Depending on the model,
quantization level, and batch size, this results in up to a 6% reduction in overall energy consumption.

Minimum GPU frequency experiment: We maintain the default hardware configuration and only
adjust the minimum GPU frequency on Jetson Orin. Increasing the minimum GPU frequency forces
the GPU DVFS mechanism to operate within a smaller range. We scale the model from EfficientNet
B0 to EfficientNet B7 to illustrate the effect of the GPU minimum frequency on inference latency.

Results: Table 3 indicates that tuning the minimum GPU frequency can significantly reduce energy
consumption when the workload cannot fully utilize the computational power of the hardware.

5

Table 2: This table shows the optimal memory frequency (in MHz) and the corresponding energy
savings for various models on Jetson TX2. B0/B4/B7 represent different models in the Efficient Net
series.

Model Energy Reduction Optimal Mem Freq

B0 14.9% 1331
B4 14.3% 1331
B7 12.0% 1331
Bert Base 25.4% 1062

Table 3: This table shows the optimal minimum GPU frequency (MHz) and the corresponding energy
savings for various models with 16-bit floating-point precision on Jetson Orin. B0/B4/B7 represent
different models in the Efficient Net series.

Optimal MinModel Size Energy Reduction GPU Freq

B0 5.3M 47.6% 1236
B4 19M 29.1% 1033
B7 66M 8.8% 1134
Bert Base 110M 1.1% 217

Notably, energy consumption and inference latency are reduced by forcing the GPU to operate at a
higher frequency. This differs from the tradeoff observed in other experiments, where we exchange
inference latency for lower energy consumption. Tuning minimum GPU frequency can nearly halve
the energy consumption for small models. As computational power becomes saturated with increasing
model size, the return on tuning the minimum GPU frequency diminishes.

Figure 3 shows the per query energy cost as we vary the minimum and maximum GPU frequency. It
shows that increasing the minimum GPU frequency from the default minimum leads to lower energy
costs and inference latency.

4 Architecture Overview

To take advantage of the opportunities described in the previous section, we design PolyThrottle,
a system that navigates the tradeoff between latency SLO, batch size, and energy. PolyThrottle
optimizes for the most energy-efficient hardware configurations under performance constraints and
handles scheduling of on-device fine-tuning.

Figure 1 shows a high-level overview of PolyThrottle’s workflow. In a production environment,
sensors on the edge devices continuously collect data and send the data to the deployed model for
inference. In the meantime, to adapt to a changing environment and data patterns, these data are
also saved for fine-tuning later. Due to the limited computation resources on these edge devices,
fine-tuning workloads are often scheduled in conjunction with the continuously running inference
requests. To address the challenges in model deployment on edge devices, PolyThrottle consists of
two key components:

1. An optimization framework that finds optimal hardware configurations for a given model under
predetermined SLOs using few samples.

2. A performance predictor and scheduler to dynamically schedule fine-tuning requests and adjust for
the optimal hardware configuration while satisfying SLO.

PolyThrottle tackles these challenges separately. Offline, we automatically find the best CPU
frequency, GPU frequency, memory frequency, and recommended batch size for inference requests
that satisfy the latency constraints while minimizing per-query energy consumption. We discuss
the details of the optimization procedure in Section 5. We also show that our formulation can find
near-optimal energy configurations in a few minutes using just a handful of samples. Compared to
the lifespan of long-running inference workloads, the overhead is negligible.

6

The optimal configuration is then installed on the inference server. At runtime, the client program
processes the input and sends inference requests to the inference server. Meanwhile, if there are
pending fine-tuning requests, the performance predictor predicts the inference latency when running
concurrent fine-tuning, and decides whether it is possible to satisfy the latency SLO if fine-tuning is
scheduled concurrently. A detailed discussion on performance prediction can be found in Section 6.
The scheduler then decides what the new configuration that can satisfy the latency SLO while
minimizing per-query energy consumption is. If such a configuration is attainable, it will schedule
fine-tuning requests iteration-by-iteration until all pending requests are finished.

Online vs. Offline: Adjusting the frequency of each hardware component entails writing to one
or multiple hardware configuration files, a process that takes approximately 17ms each. On Jetson
TX2 and Orin, each CPU core, GPU, and memory has a separate configuration file that determines
operating frequency. As a result, setting the operating frequencies for CPUs, GPU, and memory
could require up to 150ms. This duration could exceed the latency SLO for many applications, and
this is without accounting for the additional overhead of completing frequency changes. Since the
latency SLO for a specific workload does not change frequently, PolyThrottle determines the optimal
hardware configuration before deployment and only performs online adjustments to accommodate
fine-tuning workloads.

5 Problem Formulation: Two-phase Tuning

Our objective is to automatically find the optimal hardware configurations that minimize energy
consumption while satisfying latency SLOs. Formally, we are solving the optimization problem:

min f(xCPU , xGPUmin , xGPUmax , xMem, b)

s.t. t(xCPU , xGPUmin , xGPUmax , xMem, b) ≤ c

where f and t represent the energy consumption and latency associated with a workload under the
given hardware configurations and batch size. We use xCPU , xGPUmin

, xGPUmax
, xMem to denote

the frequency limit of CPU, GPU, and memory on the device, and use b to denote the maximum
batch size. We use c to denote the inference latency SLO limit, which is set by application users. This
optimization problem is challenging on several fronts:

1. The search space is large, and performing a grid search will take hours depending on the model
size. On TX2 and Orin, there are 5005 and 1820 points in the grid if we allow 5 different batch sizes.
An exhaustive search would take 14 and 5 hours, respectively.

2. To satisfy latency constraints, it is hard to decouple each dimension and optimize them separately
as they jointly affect inference latency in a non-trivial way.

3. The optimization landscape may vary across models and devices.

We observe that CPU frequency can be decoupled from GPU frequency, memory frequency, and
batch size, as it mainly affects the preprocessing latency and energy consumption. We pipeline the
requests so different requests can use CPU and GPU resources at the same time to increase inference
throughput.

Based on this observation, we propose a two-phase hardware tuning framework, where CPU tuning is
done separately from tuning other hardware components. The challenge that remains is to efficiently
optimize for an unknown function with noise. As shown in Figure 3 and 3, the performance of neural
network inference with changes in memory and GPU frequency is difficult to predict, therefore, a
good solution must be able to handle the variance while converging to a near-optimal configuration
in a sample-efficient fashion. This requires the method to adaptively balance the tradeoff between
exploration and exploitation. To solve this, we formulate the optimization problem as a Bayesian
Optimization problem and leverage recent advances in the field to incorporate the SLO constraints
unique to our setting.

5.1 Constrained Bayesian Optimization

Bayesian Optimization is a prevalent method for hyperparameter tuning [49, 50], as it can optimize
various black-box functions. This method is especially advantageous when evaluating the objective
function is expensive and requires a substantial amount of time and resources.

7

However, some applications may involve constraints that must be satisfied in addition to optimizing
the objective function. Constrained Bayesian Optimization (CBO) [51] is an extension of Bayesian
Optimization that tackles this challenge by incorporating constraints into the optimization process.

In CBO, the objective function and constraints are treated as distinct functions. The optimization
algorithm seeks to identify the set of input parameters that maximize the objective function while
adhering to the constraints. These constraints are usually expressed as inequality constraints that
must be satisfied during the optimization process. The expected constrained improvement acquisition
function in CBO is defined as follows: EIC(x̂) = PF (x̂)× EI(x̂).

Here EI(x̂) represents the expected improvement (EI) [52] within an unconstrained Bayesian
Optimization scenario, while PF (x̂) is a univariate Gaussian cumulative distribution function,
delineating the anticipated probability of whether x̂ can fulfill the constraints. Intuitively, EI chooses
the next configuration by optimizing the expected improvement relative to the best recently explored
configuration. In PolyThrottle, we choose EI since our empirical findings and corroborations from
additional studies [53] show that EI performs better than other widely-used acquisition functions
[54].

CBO [51] also employs a joint prior distribution over the objective and constraint functions that
captures their correlation structure. This joint prior is constructed by assuming that the objective
and constraint functions are drawn from a multivariate Gaussian distribution with a parameterized
mean vector and covariance matrix. These hyperparameters are learned from data using maximum
likelihood estimation.

During the optimization process, the algorithm uses this joint prior to compute an acquisition function
that balances exploration (sampling points with high uncertainty) and exploitation (sampling points
where the objective function is expected to be low and subject to feasibility constraints). The algorithm
then selects the next point to evaluate based on this acquisition function. During each iteration, the
algorithm will test whether the selected configuration violates any of the given constraints and take
the result into account for the next iteration. Encoding more system-specific hints as constraints can
be of independent research interests, however, we show in Section 7 that the current formulation
performs well under a variety of scenarios.

6 Modeling Workload Interference

Consider the case where we run an inference workload and aim to support fine-tuning without
interfering with the online inference process. When a fine-tuning request arrives, we need to decide if
it is possible to execute the fine-tuning request without violating inference SLOs. Time-sharing has
been the default method for sharing GPU workloads. In time-sharing, shared workloads use different
time slices and alternate GPU use between them. Recently, CUDA streams, Multiprocess Service
(MPS) [55] and MIG [56] have been proposed to perform space-sharing on GPUs. However, these
approaches are not supported on edge GPU devices [57, 58, 59, 60]. Given this setup, we propose
building a performance model that can predict the inference latency in the presence of fine-tuning
requests and only execute fine-tuning requests if the predicted latency can satisfy SLO.

Feature selection: To build the performance model, we leverage the following insights to select
features: 1. In convolutional neural networks, the 2D convolution layers’ performance largely
determines the overall performance of the network. Its latency is correlated to the number of floating
point operations (FLOPs) required during forward / backward propagation. 2. The ratio between the
number of FLOPs and the number of memory accesses, also known as arithmetic intensity, together
with total FLOPs, encapsulates whether a neural network is compute-bound or memory-bound. Using
these insights, we add the following features to our model: Inference FLOPs, Inference Arithmetic
Intensity, Fine-tuning FLOPs, Fine-tuning Arithmetic Intensity, and Batchsize.

Model selection: We propose using a linear model to predict inference latency when a fine-tuning
workload is running concurrently on the same device. The model aims to capture how the proposed
variables affect the resource contention between the inference workload and the fine-tuning workload,
and therefore, affect the inference latency. The proposed model can be summarized as follows:

8

Table 4: This table shows the scaling pattern of the EfficientNet model family.

Model Input dim / width Width coef Depth coef

B0 224 × 224 1.0 1.0
B4 380 × 380 1.4 1.8
B7 600 × 600 2.0 3.1

Inference time =θ0 + θ1 × FLOPsinf + θ2 ×AIinf
+ θ3 × FLOPsft + θ4 ×AIft
+ θ5 × Batchsize

Given the above performance model, we use a Non-negative Least Squares (NNLS) solver to find
the model that best fits the training data. An advantage of NNLS for linear models is that we can
solve this with very few training data points [61]. We collect a few samples on the provided model by
varying the inference and fine-tuning batch sizes and the output dimension, which captures various
fine-tuning settings. This model is used as part of the workload scheduler during deployment to
predict whether it is possible to schedule a fine-tuning request.

Fine-tuning scheduler: During inference, when there are outstanding fine-tuning requests, Poly-
Throttle uses the model to decide whether it is possible to schedule the request online without
violating the SLO. When the model finds a feasible configuration, it adjusts accordingly until either
all pending requests are finished or a new latency constraint is imposed.

7 Experiments

7.1 Setup

Hardware Platform: Our experiments are conducted on the Jetson TX2 Developer Kit and Jetson
Orin Developer Kit. To assess the energy consumption of our program, we employ the built-in
power monitors on the Jetson TX2 and Jetson Orin Developer Kits. We also cross-validate our
measurements with an external digital multimeter (See Appendix A for more details on hardware and
energy measurement).

Workload Selection: We base our experiments on the EfficientNet family and Bert models [10, 21].
EfficientNet is chosen not only for its status as a state-of-the-art convolutional network in on-device
and mobile settings but also for its principled approach to scaling the width, depth, and resolution of
convolution layers. Table 4 summarizes the scaling pattern of EfficientNet from the smallest B0 to
the largest B7. We select Bert to investigate energy usage patterns in a Transformer-based model [62],
where the workload is more memory-bounded compared to convolution-based neural networks. Bert
and its variants [11, 21, 37, 63] are widely used for Question and Answering tasks [64], making it
applicable for numerous edge devices, such as smart home assistants and smart speakers.

Dataset: We evaluate PolyThrottle on real-world traffic streams data [65] and sample frames
uniformly to feed into EfficientNet. For Bert, we evaluate on SQuAD [64] for Question Answering.
Note that datasets do not affect PolyThrottle’s performance since inference latency would not change
significantly across datasets once the model is chosen.

Implementation: PolyThrottle is built on the Nvidia Triton inference server. To maximize per-
formance, we generate TensorRT kernels that profile various data layouts and tiling strategies to
identify the fastest execution graph for a given hardware platform. Our modules include a Bayesian
optimizer for determining the best configuration, an inference client responsible for preprocessing
and submitting requests to the inference server, and a performance predictor module integrated into
the inference client for scheduling fine-tuning requests. We maintain separate queues for inference
and fine-tuning requests.

7.2 Efficiently Searching for Optimal Configuration

In this experiment, we carry out an extensive empirical analysis of tuning various models across
different hardware configurations while also adjusting the quantization level. We perform a grid

9

Bayesian Optimization Random Search Energy Reduction

0

5

10

15

20

25

of

 tr
ia

ls

Jetson Orin, Batchsize = 1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0

5

10

15

20

25

30

35

40 Jetson TX2, Batchsize = 1

0

5

10

15

20

25

30

En
er

gy
 sa

vi
ng

s (
%

)

B0 16-bit B0 32-bit B4 16-bit B4 32-bit B7 16-bit B7 32-bit Bert 16-bit Bert 32-bit
Model type (Efficient Net and Bert)

0

10

20

30

40

50

60

of

 tr
ia

ls

Jetson Orin, Without SLO

0

5

10

15

20

25

30

35

40

B0 16-bit B0 32-bit B4 16-bit B4 32-bit B7 16-bit B7 32-bit Bert 16-bit Bert 32-bit
Model type (Efficient Net and Bert)

0

20

40

60

80

100

120

140

Jetson TX2, Without SLO

0

10

20

30

40

50

En
er

gy
 sa

vi
ng

s (
%

)

Figure 4: This figure compares search efficiency between Constrained Bayesian Optimization and
Random Search. The y-axis represents the number of attempts it takes to find a near-optimal
configuration and the x-axis represents the deployed and associated quantization level. The first row
corresponds to the setting where we set a latency target but restrict the batch size to 1. The second
row where we relax the latency constraint and allow batching inference requests.

search on EfficientNet B0, B4, B7, and Bert Base to examine the potential energy savings and identify
the optimal GPU and memory frequencies for each model. We also adjust the quantization level for
each tested model. We evaluate 16-bit and 32-bit floating point (FP16/FP32) precision. The optimal
energy consumption and configuration referenced later in this section use the results obtained here as
the baseline and optimal solution. Having obtained the optimal frequency using grid search, we next
evaluate the average number of attempts it takes for PolyThrottle to find a solution within 5% of the
optimal solution. We compare our Constrained Bayesian Optimization (CBO) formulation against
Random Search (RS).

Experiment Settings: We measure the average number of attempts needed to find a near-optimal
configuration. For Random Search, we calculate the expected number of trials needed to find a near-
optimal configuration based on the grid size by computing the fraction of near-optimal configurations
and taking the reciprocal. For CBO, we set the ξ parameter associated with the Expected Improvement
function to 0.1 and initial random samples to be 5, which we find to work well across different models
and hardware platforms. We conduct two experiments where we set different inference latency
constraints, the results can be found in Figure 4:

1. We restrict inference latency to close to the optimal latency (20%). In this setting, the tight latency
constraints make it impossible to batch the inference query, essentially reducing the search space for
the optimal configuration.

2. In the second benchmark, we relax the inference latency constraint to include the configurations
that provide the lowest energy-per-query in Figure 2. In this setting, we need to explore the batch
size dimension to find the configuration that minimizes energy. We test on EfficientNet B0, B4, and
B7, as well as Bert Base on both Jetson TX2 and Jetson Orin.

Results: Figure 4 shows that CBO outperforms RS in both scenarios. Since CBO models the
relationship between hardware configuration and latency, it can find a near-optimal solution with
only 5 to 15 samples. In the second scenario, the performance of RS deteriorates as it is unable
to leverage the relationship between latency and batch size when dealing with a multiplicatively
increasing search space. Overall CBO takes 3-10x fewer samples in the second setting. The overhead
of performing CBO is also minimal. As shown in Figure 4, CBO only requires around 15 samples to
find a near-optimal solution and the optimization procedure can be completed in a few minutes. In
cases where a new model is deployed, only a few minutes of overhead are needed to find optimal
configurations for the new model.

10

Table 5: This table shows the SLO violation rate and job completion time of various scheduling
strategies for Jetson Orin on EfficientNetB7. The baseline shows the SLO violation rate without
fine-tuning.

Method Workload SLO violation

Greedy Uniform 37.91%
Adaptive Uniform 2.08%
Greedy Poisson 60.41%
Adaptive Poisson 5.42%
Greedy Twitter 22.0%
Adaptive Twitter 5.8%
Baseline Uniform 0.4%
Baseline Poisson 1.67%
Baseline Twitter 3.8%

Table 6: This table shows the SLO violation rate and job completion time of various scheduling
strategies for Jetson TX2 on EfficientNetB4. The baseline shows the SLO violation rate without
fine-tuning.

Method Workload SLO violation

Greedy Uniform 16%
Adaptive Uniform 5.5%
Greedy Poisson 35.4%
Adaptive Poisson 7.4%
Greedy Twitter 35.0%
Adaptive Twitter 7.5%
Inference Only Uniform 1%
Inference Only Poisson 3.5%
Inference Only Twitter 5.3%

It is important to note that though RS might achieve performance comparable to CBO under certain
conditions, this result is merely the expected value and the variance of RS is large. For instance,
if 10 out of 200 configurations are near-optimal, the expected number of trials needed to reach a
near-optimal configuration is 20, with a standard deviation of 19.49. Consequently, it’s plausible that
even after 40 trials, RS might still fail to identify a near-optimal configuration. On the other hand, the
standard deviation of CBO is smaller; in all experiments, CBO’s standard deviations are less than 3.

7.3 Workload-aware Fine-tuning Scheduling

Next, we evaluate how well PolyThrottle handles fine-tuning requests alongside inference. The
central question we aim to address is whether our performance predictor can effectively identify
and adjust accordingly when the SLO requirement is at risk of being violated, and if reducing the
inference batch size and trading throughput can satisfy the latency SLO. To simulate this scenario, we
generate two distinct inference arrival patterns (Uniform and Poisson) and use the publicly available
Twitter trace [66] and compare our adaptive scheduling approach to greedy scheduling, where a
fine-tuning request is scheduled as soon as it arrives. The three arrival patterns represent scenarios
that are highly controlled and bursty, respectively. In this context, we contrast PolyThrottle’s adaptive
scheduling mechanism with the greedy scheduling approach to assess the efficacy of PolyThrottle in
meeting the desired SLO requirement.

Experiment Settings: We evaluate on both synthetic and real workloads. For synthetic workloads,
we generate a stream of inference requests using both Uniform and Poisson distributions. For real-
world workload, we first uniformly sample a day of Twitter streaming traces and then compute the
variance of requests during each minute. We then picked the segment with the highest variance to test
PolyThrottle’s capability in handling request bursts [66, 67]. On Jetson Orin, we replay the stream
for 30 seconds and measure the SLO violation rate during the replay using EfficientNet B7. Since
each burst only lasts for a few seconds, this suffices to capture many bursts in the workload. We

11

find that running the experiment for longer durations produces similar results. We set the fine-tuning
batch size to 64, the number of fine-tuning iterations to 10, SLO to 0.7s, the output dimension to
1000, and an average of 8 inference requests per second. On Jetson TX2, we do the same experiment
on EfficientNet B4. Due to memory constraints, we perform the fine-tuning batch size to 8, SLO to
1s, the output dimension to 100, and an average of 4 inference requests per second. We select a less
performative model on TX2 to meet a reasonable SLO target (under 1s). The number of fine-tuning
iterations is chosen based on the duration of the replay. We then measure the energy costs when
deploying PolyThrottle at the default and optimal hardware frequency, respectively, to measure how
much energy we save during this period. The optimal hardware frequency is obtained from results in
Section 7.2.

For greedy scheduling, we employ a standard drop policy [68, 65], whereby a request is dropped if it
has already exceeded its deadline. In the adaptive setting, we use the predictor to determine whether
to drop an inference request. We also replay the inference request stream without fine-tuning requests
to serve as a baseline.

Results: Table 5 and 6 show the SLO violation rates under various workloads and latency targets.
The findings indicate that greedy scheduling may lead to significant SLO violations owing to the
interference introduced by the fine-tuning workload. In contrast, PolyThrottle’s adaptive scheduling
mechanism demonstrates the ability to achieve low SLO violation rates by dynamically adjusting
configurations. The baseline figures in the table represent SLO violation rates in the absence of
interference from fine-tuning requests.

Inherent variance in neural network inference resulted in 1% of SLO violations in the case of Uniform
distribution. However, bursts in the Poisson distribution and the Twitter workload generated more SLO
violations. PolyThrottle’s adaptive scheduling mechanism significantly reduces the SLO violation
rate, meeting the SLO requirements while concurrently handling fine-tuning requests. Nevertheless,
in several instances, we were unable to achieve near-zero SLO violation rates. This limitation can
be attributed to the granularity of scheduling as we process the current batch of requests over an
extended timespan due to interference from the fine-tuning workload.

We also reduce energy consumption by 14% on EfficientNet B7 on Jetson Orin and by 23% on
EfficientNet B4 on Jetson TX2 across the workloads. We show in Appendix D how PolyThrottle
reacts to changing SLOs when there are outstanding fine-tuning requests.

8 Conclusion

In this work, we examine the unique characteristics of energy consumption in neural network
inference, especially for edge devices. We identified unique tradeoffs and dimensions between
energy consumption and inference latency SLOs and empirically demonstrated hidden components
in optimizing energy consumption. We then propose an optimization framework that automatically
and holistically tunes various hardware components to find a configuration aligned with the Pareto
Frontier. We empirically verify the effectiveness and efficiency of PolyThrottle. PolyThrottle also
adapts to the need for fine-tuning and proposes a simple performance prediction model to adaptively
schedule fine-tuning requests while keeping the online inference workload under the inference latency
SLO whenever possible. We hope our study sheds more light on the hidden dimension of NN energy
optimization.

References

[1] T. Anderson, A. Belay, M. Chowdhury, A. Cidon, and I. Zhang, “Treehouse: A case for
carbon-aware datacenter software,” in HotCarbon, 2022.

[2] U. Gupta, Y. G. Kim, S. Lee, J. Tse, H.-H. S. Lee, G.-Y. Wei, D. Brooks, and C.-J. Wu,
“Chasing carbon: The elusive environmental footprint of computing,” IEEE Micro, vol. 42, no. 4,
pp. 37–47, 2022.

[3] Q. Cao, A. Balasubramanian, and N. Balasubramanian, “Towards accurate and reliable energy
measurement of nlp models,” in Proceedings of SustaiNLP: Workshop on Simple and Efficient
Natural Language Processing, 2020.

12

[4] L. F. W. Anthony, B. Kanding, and R. Selvan, “Carbontracker: Tracking and predicting the
carbon footprint of training deep learning models,” in ICML Workshop on Challenges in
Deploying and monitoring Machine Learning Systems, 2020.

[5] NVIDIA, “Jetson partner solutions ebook,” 2023. https://resources.nvidia.com/en-us-jetson-
success-stories/jetson-partner-solutions-ebook?lx=XRDs_y.

[6] C.-J. Wu, R. Raghavendra, U. Gupta, B. Acun, N. Ardalani, K. Maeng, G. Chang, F. Aga,
J. Huang, C. Bai, M. Gschwind, A. Gupta, M. Ott, A. Melnikov, S. Candido, D. Brooks,
G. Chauhan, B. Lee, H.-H. Lee, B. Akyildiz, M. Balandat, J. Spisak, R. Jain, M. Rabbat, and
K. Hazelwood, “Sustainable ai: Environmental implications, challenges and opportunities,” in
Proceedings of Machine Learning and Systems, 2022.

[7] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai,” Commun. ACM, vol. 63, no. 12,
pp. 54–63, 2020.

[8] A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres, “Quantifying the carbon emissions of
machine learning,” arXiv preprint arXiv:1910.09700, 2019.

[9] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[10] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,”
in International conference on machine learning, pp. 6105–6114, PMLR, 2019.

[11] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer, “I-bert: Integer-only bert
quantization,” in International conference on machine learning, pp. 5506–5518, PMLR, 2021.

[12] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods for 8-bit training of neural
networks,” Advances in neural information processing systems, vol. 31, 2018.

[13] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural networks
with binary weights during propagations,” Advances in neural information processing systems,
vol. 28, 2015.

[14] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural networks with low precision
multiplications,” arXiv preprint arXiv:1412.7024, 2014.

[15] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A survey of quan-
tization methods for efficient neural network inference,” arXiv preprint arXiv:2103.13630,
2021.

[16] J. You, J.-W. Chung, and M. Chowdhury, “Zeus: Understanding and optimizing gpu energy
consumption of dnn training,” arXiv preprint arXiv:2208.06102, 2022.

[17] D. Gu, X. Xie, G. Huang, X. Jin, and X. Liu, “Energy-efficient gpu clusters scheduling for deep
learning,” arXiv preprint arXiv:2304.06381, 2023.

[18] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson, and J. Mace, “Serving
{DNNs} like clockwork: Performance predictability from the bottom up,” in 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), pp. 443–462, 2020.

[19] H. Cai, T. Wang, Z. Wu, K. Wang, J. Lin, and S. Han, “On-device image classification with
proxyless neural architecture search and quantization-aware fine-tuning,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0, 2019.

[20] H. Cai, C. Gan, L. Zhu, and S. Han, “Tinytl: Reduce memory, not parameters for efficient on-
device learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 11285–11297,
2020.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[22] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang, P. Vepakomma, A. Singh, H. Qiu,
et al., “Fedml: A research library and benchmark for federated machine learning,” arXiv preprint
arXiv:2007.13518, 2020.

[23] I. Gog, S. Kalra, P. Schafhalter, J. E. Gonzalez, and I. Stoica, “D3: a dynamic deadline-driven
approach for building autonomous vehicles,” in Proceedings of the Seventeenth European
Conference on Computer Systems, pp. 453–471, 2022.

13

[24] Y. Wang, Q. Wang, S. Shi, X. He, Z. Tang, K. Zhao, and X. Chu, “Benchmarking the perfor-
mance and energy efficiency of ai accelerators for ai training,” in 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID), 2020.

[25] F. Wang, W. Zhang, S. Lai, M. Hao, and Z. Wang, “Dynamic gpu energy optimization for
machine learning training workloads,” IEEE Transactions on Parallel and Distributed Systems,
2021.

[26] Z. Tang, Y. Wang, Q. Wang, and X. Chu, “The impact of gpu dvfs on the energy and perfor-
mance of deep learning: An empirical study,” in Proceedings of the Tenth ACM International
Conference on Future Energy Systems, 2019.

[27] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations for deep learning
in nlp,” in Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, 2019.

[28] X. Mei, Q. Wang, and X. Chu, “A survey and measurement study of gpu dvfs on energy
conservation,” Digital Communications and Networks, vol. 3, no. 2, pp. 89–100, 2017.

[29] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho, H. Zhang, G. R. Ganger, and
E. P. Xing, “Pollux: Coadaptive cluster scheduling for goodput-optimized deep learning,” in
OSDI, 2021.

[30] C. Wan, M. Santriaji, E. Rogers, H. Hoffmann, M. Maire, and S. Lu, “Alert: Accurate learning
for energy and timeliness,” in ATC, 2020.

[31] M. Hodak, M. Gorkovenko, and A. Dholakia, “Towards power efficiency in deep learning on
data center hardware,” in IEEE International Conference on Big Data, 2019.

[32] G. Wang, S. Venkataraman, A. Phanishayee, N. Devanur, J. Thelin, and I. Stoica, “Blink: Fast
and generic collectives for distributed ml,” in Proceedings of Machine Learning and Systems,
2020.

[33] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and C. Guo, “A generic communication
scheduler for distributed dnn training acceleration,” in SOSP, 2019.

[34] D.-K. Kang, K.-B. Lee, and Y.-C. Kim, “Cost efficient gpu cluster management for training and
inference of deep learning,” Energies, vol. 15, no. 2, p. 474, 2022.

[35] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A first look at deep learning apps on
smartphones,” in The World Wide Web Conference, WWW ’19, p. 2125–2136, 2019.

[36] J. Lee, N. Chirkov, E. Ignasheva, Y. Pisarchyk, M. Shieh, F. Riccardi, R. Sarokin, A. Ku-
lik, and M. Grundmann, “On-device neural net inference with mobile gpus,” arXiv preprint
arXiv:1907.01989, 2019.

[37] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108, 2019.

[38] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Training data-
efficient image transformers & distillation through attention,” in International Conference on
Machine Learning, pp. 10347–10357, PMLR, 2021.

[39] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang,
V. Vasudevan, et al., “Searching for mobilenetv3,” in Proceedings of the IEEE/CVF international
conference on computer vision, pp. 1314–1324, 2019.

[40] N. D. Lane and P. Georgiev, “Can deep learning revolutionize mobile sensing?,” in Proceedings
of the 16th international workshop on mobile computing systems and applications, pp. 117–122,
2015.

[41] S. M. Nabavinejad, S. Reda, and M. Ebrahimi, “Batchsizer: Power-performance tradeoff for dnn
inference,” in Proceedings of the 26th Asia and South Pacific Design Automation Conference,
2021.

[42] T. Komoda, S. Hayashi, T. Nakada, S. Miwa, and H. Nakamura, “Power capping of cpu-
gpu heterogeneous systems through coordinating dvfs and task mapping,” in 2013 IEEE 31st
International Conference on computer design (ICCD), IEEE, 2013.

[43] V. Kandiah, S. Peverelle, M. Khairy, J. Pan, A. Manjunath, T. G. Rogers, T. M. Aamodt, and
N. Hardavellas, “Accelwattch: A power modeling framework for modern gpus,” in MICRO,
2021.

14

[44] S. Hong and H. Kim, “An integrated gpu power and performance model,” in ISCA, 2010.

[45] Y. Arafa, A. ElWazir, A. ElKanishy, Y. Aly, A. Elsayed, A. Badawy, G. Chennupati, S. Eiden-
benz, and N. Santhi, “Verified instruction-level energy consumption measurement for nvidia
gpus,” in Proceedings of the 17th ACM International Conference on Computing Frontiers, 2020.

[46] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. Andreozzi, A. Armejach,
N. Asmussen, B. Beckmann, S. Bharadwaj, et al., “The gem5 simulator: Version 20.0+,” arXiv
preprint arXiv:2007.03152, 2020.

[47] Y. Censor, “Pareto optimality in multiobjective problems,” Applied Mathematics and Optimiza-
tion, vol. 4, no. 1, pp. 41–59, 1977.

[48] A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, “Data movement is all you need: A
case study on optimizing transformers,” Proceedings of Machine Learning and Systems, vol. 3,
pp. 711–732, 2021.

[49] K. Kandasamy, K. R. Vysyaraju, W. Neiswanger, B. Paria, C. R. Collins, J. Schneider, B. Poczos,
and E. P. Xing, “Tuning hyperparameters without grad students: Scalable and robust bayesian
optimisation with dragonfly,” The Journal of Machine Learning Research, vol. 21, no. 1,
pp. 3098–3124, 2020.

[50] A. Klein, S. Bartels, S. Falkner, P. Hennig, and F. Hutter, “Towards efficient bayesian optimiza-
tion for big data,” in NIPS 2015 Bayesian Optimization Workshop, 2015.

[51] J. R. Gardner, M. J. Kusner, Z. E. Xu, K. Q. Weinberger, and J. P. Cunningham, “Bayesian
optimization with inequality constraints.,” in ICML, vol. 2014, pp. 937–945, 2014.

[52] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning,”
arXiv preprint arXiv:1012.2599, 2010.

[53] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang, “Cherrypick:
Adaptively unearthing the best cloud configurations for big data analytics.,” in NSDI, vol. 2,
pp. 4–2, 2017.

[54] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning
algorithms,” Advances in neural information processing systems, vol. 25, 2012.

[55] NVIDIA, “Stream management,” 2023. https://docs.nvidia.com/cuda/cuda-runtime-api.

[56] NVIDIA, “Nvidia multi-instance gpu,” 2023. https://docs.nvidia.com/datacenter/tesla/mig-user-
guide/index.html.

[57] Z. Bai, Z. Zhang, Y. Zhu, and X. Jin, “Pipeswitch: Fast pipelined context switching for deep
learning applications,” in Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation, pp. 499–514, 2020.

[58] Y. Zhao, X. Liu, S. Liu, X. Li, Y. Zhu, G. Huang, X. Liu, and X. Jin, “Muxflow: Efficient and safe
gpu sharing in large-scale production deep learning clusters,” arXiv preprint arXiv:2303.13803,
2023.

[59] P. Yu and M. Chowdhury, “Fine-grained gpu sharing primitives for deep learning applications,”
Proceedings of Machine Learning and Systems, vol. 2, pp. 98–111, 2020.

[60] X. Wu, J. Rao, W. Chen, H. Huang, C. Ding, and H. Huang, “Switchflow: preemptive multi-
tasking for deep learning,” in Proceedings of the 22nd International Middleware Conference,
pp. 146–158, 2021.

[61] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest: Efficient performance
prediction for {Large-Scale} advanced analytics,” in 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pp. 363–378, 2016.

[62] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao,
S. Gugger, M. Drame, Q. Lhoest, and A. Rush, “Transformers: State-of-the-art natural language
processing,” in EMNLP, 2020.

[63] T. Tambe, C. Hooper, L. Pentecost, T. Jia, E.-Y. Yang, M. Donato, V. Sanh, P. Whatmough,
A. M. Rush, D. Brooks, et al., “Edgebert: Sentence-level energy optimizations for latency-aware
multi-task nlp inference,” in MICRO, 2021.

15

[64] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions for machine
comprehension of text,” in EMNLP, 2016.

[65] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishnamurthy, and R. Sundaram,
“Nexus: A gpu cluster engine for accelerating dnn-based video analysis,” in Proceedings of the
27th ACM Symposium on Operating Systems Principles, pp. 322–337, 2019.

[66] Twitter, “Twitter streaming traces,” 2018. https://archive.org/details/archiveteam-twitter-stream-
2018-04.

[67] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “{INFaaS}: Automated model-less
inference serving,” in 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp. 397–
411, 2021.

[68] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and I. Stoica, “Clipper: A
low-latency online prediction serving system.,” in NSDI, vol. 17, pp. 613–627, 2017.

16

A Hardware Details

A.1 Jetson platform details

The Jetson TX2 Developer Kit features a 256-core NVIDIA Pascal GPU, a Dual-Core NVIDIA
Denver 2 64-bit CPU, a Quad-Core ARM Cortex-A57 MPCore CPU, and 8GB of 128-bit LPDDR4
memory with 59.7 GB/s bandwidth. The kit’s maximum power consumption is 15W. The Jetson
Orin Developer Kit includes a 2,048-core NVIDIA Ampere GPU with 64 Tensor Cores and a
12-core Arm CPU. This kit comes with 32GB of 256-bit LPDDR5 memory, featuring a 204.8GB/s
bandwidth, and has a maximum power consumption of 60W.

A.2 Power consumption measurement

The Nvidia Jetson TX2 Developer Kit allows for separate measurements of GPU, CPU, DDR, and
total energy consumption, while the Jetson Orin uses the built-in tegrastats module for measuring
power usage across hardware components. Due to power rail design limitations, GPU power usage
on the Jetson Orin can only be measured alongside SoC power usage.

On Jetson TX2, we measure power usage by querying the total power input. We then average the
peak power consumption to obtain the power usage during inference. Then we compute the energy
cost for each inference request by multiplying the power and the inference time. On Jetson Orin, we
leverage the existing tegrastats tool and repeatedly query tegrastats at a fixed interval (50ms). We
then sum up each component’s power consumption to obtain the overall power consumption, before
multiplying the power and the inference time to obtain the energy cost for each inference request. To
obtain a steady reading, we send 1000 inference requests for each hardware configuration for every
model that we test.

We cross-validate our measurements using a USB digital multimeter capable of transmitting data to
computer software in real-time via Bluetooth. The measurements obtained from the multimeter gen-
erally align with those from the internal power rails on Jetson Kits, although external measurements
are consistently around 10% higher than Jetson internal measurements. This discrepancy may be
attributable to unaccounted factors in the power rail design. We opted to use internal measurements
since they provide component-specific readings, whereas the multimeter can only measure overall
energy consumption. Moreover, the multimeter supports one measurement per second, while Jetson
tools allow for millisecond-scale measurements, which are better suited to inference workloads.

A.3 Measurement Overhead

Since we repeatedly query the power input or built-in power management tool, we want to understand
whether these queries affect total energy consumption. We use a USB digital multimeter capable of
transmitting data to computer software in real-time via Bluetooth. We then run our inference program
with and without querying the power input or the power management tool. We find that the power
consumption reported by the multimeter increases around 5 → 10%, depending on the base power
consumption. We observe that this increment is near constant across different models and runs and
therefore we believe using internal measurement as described in the section above will not affect our
findings. The multimeter cannot provide the precision and flexibility we need to measure the energy
cost of inference, which often operates at a millisecond scale.

B Experimental Results

In this section, we further demonstrate the tradeoff between memory frequency and maximum GPU
frequency by presenting an array of results. These results underline the interesting observation
that the energy consumption patterns may vary for the same model operating on different devices.
Furthermore, even for the same model-device pairing, the optimization landscape can be significantly
influenced by the batch size. This underlines the complexities of energy optimization and the need
for an adaptive framework that can take these factors into account. Figures 6− 12 show the energy
consumption patterns of EfficientNet and Bert on Jetson TX2 and Orin under various batch sizes.
Table 7 shows the optimal CPU frequency and corresponding energy consumption reduction in image
preprocessing.

17

GP
U

fre
qu

en
cy

 (M
Hz

)

400

600

800

1000

1200

Memory frequency (MHz) 400
600

800
1000

1200
1400

1600
1800

Energy consum
ption per query(J)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Bert energy consumption per query on Jetson TX2

GP
U

fre
qu

en
cy

 (M
Hz

)

400

600

800

1000

1200

Memory frequency (MHz) 400
600

800
1000

1200
1400

1600
1800

Energy consum
ption per query(J)

22
24
26
28
30
32

34

Bert energy consumption per query on Jetson TX2

Figure 5: Left figure shows per query energy cost as we vary the GPU frequency and memory
frequency for Bert at FP16 on Jetson TX2 versus varying Memory and GPU frequency with batch
size fixed at 1. Right figure shows per query energy cost as we vary the GPU frequency and memory
frequency for Bert at FP32 on Jetson TX2 versus varying Memory and GPU frequency with batch
size fixed at 1.

GP
U

fre
qu

en
cy

 (M
Hz

)

400

600

800

1000

1200

Memory frequency (MHz) 400
600

800
1000

1200
1400

1600
1800

Energy consum
ption per query(J)

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

Bert energy consumption per query on Jetson TX2

GP
U

fre
qu

en
cy

 (M
Hz

)

400

600

800

1000

1200

Memory frequency (MHz) 400
600

800
1000

1200
1400

1600
1800

Energy consum
ption per query(m

J)

26
28
30
32
34
36
38
40

EfficientNet B4 energy consumption per query on Jetson TX2

Figure 6: Left figure shows per query energy cost as we vary the GPU frequency and memory
frequency for Bert at FP16 on Jetson TX2 versus varying Memory and GPU frequency with batch
size fixed at 8. Right figure shows per query energy cost as we vary the GPU frequency and memory
frequency for EfficientNet B4 at FP16 on Jetson TX2 versus varying Memory and GPU frequency
with batch size fixed at 16.

18

Table 7: This table shows how CPU frequency (MHz) affects energy consumption for image process-
ing on Jetson TX2 and Jetson Orin.

Optimal Min
Device Energy Reduction CPU Freq

Orin 28.6% 900
TX2 29.4% 1000

GP
U

fre
qu

en
cy

 (M
Hz

)

400

600

800

1000

1200

Memory frequency (MHz) 400
600

800
1000

1200
1400

1600
1800

Energy consum
ption per query(m

J)

65
70
75
80
85
90
95

100

EfficientNet B7 energy consumption per query on Jetson TX2

GPU frequency (MHz)

400

600

800

1000

1200

Mem
ory

 fr
eq

ue
nc

y (
MHz

)

1000

1500

2000

2500

3000 En
er

gy
 c

on
su

m
pt

io
n

pe
r q

ue
ry

(m
J)

190
200
210
220

230

240

250

EfficientNet B7 energy consumption per query on Jetson Orin

Figure 7: Left figure shows per query energy cost as we vary the GPU frequency and memory
frequency for EfficientNet B7 at FP16 on Jetson TX2 versus varying Memory and GPU frequency
with batch size fixed at 16. Right figure shows per query energy cost as we vary the GPU frequency
and memory frequency for EfficientNet B7 at FP16 on Jetson Orin versus varying Memory and GPU
frequency with batch size fixed at 8.

GPU frequency (MHz)

400

600

800

1000

1200

Mem
ory

 fr
eq

ue
nc

y (
MHz

)

1000

1500

2000

2500

3000 En
er

gy
 c

on
su

m
pt

io
n

pe
r q

ue
ry

(m
J)

280
300
320
340
360

380

400

EfficientNet B7 energy consumption per query on Jetson Orin

GPU frequency (MHz)

400

600

800

1000

1200

Mem
ory

 fr
eq

ue
nc

y (
MHz

)

1000

1500

2000

2500

3000 En
er

gy
 c

on
su

m
pt

io
n

pe
r q

ue
ry

(m
J)

90

95

100

105

110

115

EfficientNet B4 energy consumption per query on Jetson Orin

Figure 8: Left figure shows per query energy cost as we vary the GPU frequency and memory
frequency for EfficientNet B7 at FP16 on Jetson Orin versus varying Memory and GPU frequency
with batch size fixed at 1. Right figure shows per query energy cost as we vary the GPU frequency
and memory frequency for EfficientNet B4 at FP16 on Jetson Orin versus varying Memory and GPU
frequency with batch size fixed at 8.

C Arithmetic intensity

The arithmetic intensity of a 2D convolution layer can be computed as:

19

Table 8: The notation table defines the variable used in equation 1

Variable Definition

N Batch size
C Input number of channels
H Input tensor height
W Input tensor width
K Output number of channels
P Output tensor height
Q Output tensor width
R Convolution filter height
S Convolution filter width

0

200

400

600

800

1000
La

te
nc

y
SL

O
(m

s)

0 10 20 30 40 50 60
Time (seconds)

Scheduled
 requests

Figure 9: This figure shows the inference latency SLO and when fine-tuning requests are scheduled.

AIconv =
N ·K · P ·Q · C ·R · S

N · C ·H ·W +K · C ·R · S +N ·K · P ·Q
(1)

The notations used in equation 1 can be found in table 8.

The FLOPs term captures the total computation of each workload, while the arithmetic intensity term
captures how much computation power and memory bandwidth will affect the final performance.
Combining the aforementioned features with an intercept term, which captures the fixed overhead
in neural network inference, we can build a model that predicts inference latency if the hardware
operating frequency is stable.

D Predictor Analysis

We vary the latency SLO to assess how the predictor schedules the fine-tuning requests. We replay a
60-second stream where we initially set the latency SLO to 250ms for the first half (30 seconds), and
then increase it to 700ms for the remainder. As shown in Figure 9, under stringent latency conditions,
the predictor deduces that it is impractical to schedule fine-tuning requests while adhering to the
latency SLO, hence no fine-tuning requests are scheduled. Conversely, when the latency SLO is more
relaxed, the predictor determines that it is feasible to schedule fine-tuning requests and sequentially
schedules each request once the preceding one is completed and has issued a completion signal.

20

	Introduction
	Motivation
	On-device Neural Network Deployment
	Holistic Energy Consumption Optimization

	Opportunities
	Architecture Overview
	Problem Formulation: Two-phase Tuning
	Constrained Bayesian Optimization

	Modeling Workload Interference
	Experiments
	Setup
	Efficiently Searching for Optimal Configuration
	Workload-aware Fine-tuning Scheduling

	Conclusion
	Hardware Details
	Jetson platform details
	Power consumption measurement
	Measurement Overhead

	Experimental Results
	Arithmetic intensity
	Predictor Analysis

